Highlights
New speed record in proving Keccak: Binary GKR
Polyhedra 提出 Binary GKR,Keccak 零知识证明提速 5.7 倍,优化 zkEVM 关键瓶颈。
- https://blog.polyhedra.network/binary-gkr/
SP1 Hypercube: Proving Ethereum in Real-Time
SP1 Hypercube 实现以太坊区块 12 秒内实时零知识证明,性能提升 5 倍。
- https://blog.succinct.xyz/sp1-hypercube/
For Algorithms, a Little Memory Outweighs a Lot of Time
MIT 学者 Ryan Williams 证明少量内存可替代大量计算时间,突破 时间 - 空间 复杂性瓶颈。
- https://www.quantamagazine.org/for-algorithms-a-little-memory-outweighs-a-lot-of-time-20250521/
Animated Factorization Diagrams
这个页面以动画方式展示了整数的质因数分解,图形美观直观,是数学教学和科普的极佳素材。
- http://www.datapointed.net/visualizations/math/factorization/animated-diagrams/
Papers
Fheanor: a new, modular FHE library for designing and optimising schemes
- https://eprint.iacr.org/2025/864
Data Availability for Thousands of Nodes
- https://eprint.iacr.org/2025/865
One for All, All for One: Universal semi-agnostic quantum circuit for solving (Standard) Abelian Hidden Subgroup Problems
- https://eprint.iacr.org/2025/869
From List-Decodability to Proximity Gaps
- https://eprint.iacr.org/2025/870
Simple and Efficient Lattice Threshold Signatures with Identifiable Aborts
- https://eprint.iacr.org/2025/871
Finally! A Compact Lattice-Based Threshold Signature
- https://eprint.iacr.org/2025/872
Papercraft: Lattice-based Verifiable Delay Function Implemented
- https://eprint.iacr.org/2025/879
k-out-of-n Proofs and Application to Privacy-Preserving Cryptocurrencies
- https://eprint.iacr.org/2025/884
At the Top of the Hypercube -- Better Size-Time Tradeoffs for Hash-Based Signatures
- https://eprint.iacr.org/2025/889
Obfuscation of Unitary Quantum Programs
- https://eprint.iacr.org/2025/891
Achieving "beyond CCA1" security for linearly homomorphic encryption, without SNARKs?
- https://eprint.iacr.org/2025/894
On the Fiat–Shamir Security of Succinct Arguments from Functional Commitments
- https://eprint.iacr.org/2025/902
SubLogarithmic Linear Time SNARKs from Compressed Sum-Check
- https://eprint.iacr.org/2025/908
Automated Verification of Consistency in Zero-Knowledge Proof Circuits
- https://eprint.iacr.org/2025/916
The Accidental Computer: Polynomial Commitments from Data Availability
- https://eprint.iacr.org/2025/918
Jagged Polynomial Commitments (or: How to Stack Multilinears)
- https://eprint.iacr.org/2025/917
HyperWolf: Efficient Polynomial Commitment Schemes from Lattices
- https://eprint.iacr.org/2025/922
Polocolo: A ZK-Friendly Hash Function Based on S-boxes Using Power Residues (Full Version)
- https://eprint.iacr.org/2025/926
Fast elliptic curve scalar multiplications in SN(T)ARK circuits
- https://eprint.iacr.org/2025/933
如果你重视零知识证明技术信息的实效性和信息源质量的意义,不想娱乐至死、短视投机、无关广告、推荐算法、劣币驱逐良币的泥沙裹挟迷失,请多支持我们(包括给予赞助支持),让这一汨清流继续流淌~* 📮 邮箱订阅:https://paragraph.xyz/@zkinsights* 感谢 Kurt、Hins 对本期 ZK Insights 的特别贡献!如果你对我们的 ZK Insights 感兴趣,或者有类似的内容分享想法,我们非常鼓励大家直接前往我们的 Github repo Pull Request,与有相同兴趣和爱好的 ZKPunks 一起共创!
✨Github repo link:https://github.com/ZKPunk-Org/zk-insights✨ 网页汇总版:https://insights.zkpunk.pro/
Coset
致力于促进不同个体之间有效的、深度的交流与协作,激发更多创新和创造。
Website:https://coset.io/
Twitter:https://twitter.com/coset_io
Telegram:https://t.me/coset_io
Youtube:www.youtube.com/@coset_io
Contact:emily@coset.io
点击 阅读原文 /Read More ,开启邮箱订阅🔛